电荷守恒定律(守恒定律)

由网友(天策↘真龙)分享简介:电荷守恒定律(law of conservation of electric charge)是1种闭于电荷的守恒定律。电荷守恒定律有两种版原,“强版电荷守恒定律”取“弱版电荷守恒定律”,正在国际单元制中,电荷质的单元是库仑,用字母Q暗示,单元为C。中文名电荷守恒定律别称电质守恒定律使用教科电磁教应用规模静电场类型强版电荷...

电荷守恒定律(law of conservation of electric charge)是一种关于电荷的守恒定律。

3 1静电场1 6分钟看懂电荷及电荷守恒定律

电荷守恒定律有两种版本,“弱版电荷守恒定律”与“强版电荷守恒定律”,在国际单位制中,电荷量的单位是库仑,用字母Q表示,单位为C。

中文名

电荷守恒定律

别称

电量守恒定律

应用学科

电磁学

使用范围

静电场

类型

弱版电荷守恒定律、强版电荷守恒定律[1]

外文名

law of charge conservation

提出者

本杰明·富兰克林

适用领域范围

电磁学

相关术语

电荷守恒

历史

美国科学家与政治家富兰克林于1747年与朋友通信:

在这里与欧洲,科学家已经发现,并且证实,电火是一种真实的元素或物质种类,不是因摩擦而产生,而是只能从搜集获得。

——本杰明·富兰克林

学术界归功富兰克林为这定律的创建者。“富兰克林电荷守恒定律”表明,在任何绝缘系统内,总电荷量不变。

概念

电荷守恒定律是物理学的基本定律之一 。它指出,对于一个孤立系统,不论发生什么变化 ,其中所有电荷的代数和永远保持不变。电荷守恒定律表明,如果某一区域中的电荷增加或减少了,那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷,那么必定有等量的异号电荷同时产生或消失。

电荷的多少称为电荷量,常简称为电量,故电荷守恒定律又称电量守恒定律。在国际单位制中,电荷量的单位是库仑,用字母Q表示,单位为C。通常正电荷的电荷量用正数表示,负电荷的电荷量用负数表示。

原则

守恒定律建立于一个基础原则,即电荷不能独自生成与湮灭。假设带正电粒子接触到带负电粒子,两个粒子带有电量相同,则因为这接触动作,两个粒子会变为中性,这物理行为是合理与被允许的。一个中子,也可以因贝塔衰变,生成带正电的质子、带负电的电子与中性的反中微子。但是,任何粒子,不可能独自地改变电荷量。物理学明确地禁止这种物理行为。更仔细地说,像电子、质子一类的亚原子粒子会带有电荷,而这些亚原子粒子可以被生成或湮灭。在粒子物理学里,电荷守恒意味着,在那些生成带电粒子的基本粒子反应里,虽然会有带正电粒子或带负电粒子生成,在反应前与反应后,总电荷量不会改变;同样地,在那些湮灭带电粒子的基本粒子反应里,虽然会有带正电粒子或带负电粒子湮灭,在反应前与反应后,总电荷量绝不会改变。

电磁学表述

流入某体积的净电流为

其中,是电流,是电流密度,是包围体积的闭曲面,是微小面矢量元素,垂直于从体积内朝外指出。

应用散度定理,将这方程写为

总电荷量与体积内的电荷密度的关系为

电荷守恒要求,流入体积的净电流,等于体积内总电荷量Q的变率:

所以,。

对于任意体积,上述方程都成立。所以,可以将被积式提取出来:

电荷守恒方程又称为电荷连续方程。

在十九世纪中期,詹姆斯·麦克斯韦发现安培定律(原本形式)不能满足电荷守恒的要求。于是,他将安培定律的方程加以修正为麦克斯韦-安培方程。由于这动作,麦克斯韦发觉包括这方程在内的麦克斯韦方程组,可以用来描述电磁波的物理行为,并且推导出电磁波以光速传播于自由空间。因此,他正确地断定光波是一种电磁波。更详尽细节,请参阅条目麦克斯韦方程组。

确实无误,麦克斯韦方程组已概括了电荷守恒方程。思考麦克斯韦-安培方程,

其中,B是磁场,是磁常数,是电常数,E是电场。

取这方程的散度,

应用高斯定律,

所以,电荷守恒成立,

属性

要使物体带电,可利用摩擦起电、接触起电、静电感应、(感应起电)、光电效应等方法。物体是否带电,通常可用验电器来检验。物体带电实际上是得失电子的结果。这意味着电荷不能离开电子、质子而存在。电荷乃是电子、质子等微观粒子所具有的一种属性。

由摩擦起电和其他起电过程的大量实验事实表明,一切起电过程其实都是使物体上正、负电荷分离或转移的过程中,在这种过程中,电荷既不能消灭,也不能创生,只能使原有的电荷重新分布。由此就可以总结出电荷守恒定律:一个孤立系统的总电荷(即系统中所有正、负电荷之代数和)在任何物理过程中始终保持不变。所谓孤立系统,就是指它与外界没有任何相互作用的系统,是一种理想状态。电荷守恒定律也是自然界中一条基本的守恒定律,在宏观和微观领域中普遍适用。

近代物理实验发现,在一定条件下,带电粒子可以产生和湮没。例如,一个高能光子在一定条件下可以产生一个正电子和一个负电子;一对正、负电子可以同时湮没,转化为光子。不过在这些情况下,带电粒子总是成对产生和湮没,两个粒子带电数量相等但正负相反,而光子又不带电,所以电荷的代数和仍然不变。因此,一个与外界没有电荷交换的系统,电荷的代数和保持不变。它是自然界重要的基本规律之一。

静电学

在静电学里,电势乃是相对的,不是绝对的。假设在三维空间的电势为,现将电势加上一个常数 c,改为,则电场不会改变,这性质称为规范不变性。由于这性质,必需先设定在某参考位置的电势,在其它位置的电势才具有真实物理意义。因此,每一条方程只会涉及到相对电势,不会涉及到绝对电势。

电荷守恒与规范不变性密切相关。这可以用一个思想实验来论述。假设某种过程可以破坏电荷守恒(假若无法永久地破坏,至少可以暂时地破坏)。这过程会在空间里电势为的某位置生成电荷q,然后将这电荷迁移至在空间里电势为的位置,最后将这电荷湮灭。注意到这过程并没有破坏全域电荷守恒定律,只破坏了局域电荷守恒定律。

现在规定,在任意位置,生成电荷需要输入能量W,湮灭电荷会释出能量W。由于生成电荷或湮灭电荷的位置是任意位置,W不会与相对电势有关。W也不会与绝对电势有关。那么,整个过程会使得系统获得能量。但是,这样做会违反能量守恒。为了遵守能量守恒,必需要求局域电荷守恒。所以,由于规范不变性,电荷守恒定律成立。

实验证据

假若电荷不永远守恒,则可能会发生粒子衰变。检验电荷守恒最好的实验方法就是寻找这些粒子衰变。至今为止,物理学者尚未能找到任何这类衰变。例如,对于电子衰变为中微子与光子的反应,物理学者试着侦测这反应产生的高能光子:

平均寿命大于4.6×10年(90%置信水平)。

但是,有理论提出,即使电荷不永远守恒,这种生成高能光子的衰变反应也永远不会发生。当然,也有实验试着侦测不产生高能光子的衰变,或者一些比较不寻常的电荷破坏过程,例如,电子可能会自发变成正电子、电子移入其它维度。最优良的实验值限为

任意粒子平均寿命大于6.4×10年(68%置信水平)
对于所有中子衰变事件,电荷不守恒衰变的发生率低于8×10(68%置信水平)

阅读全文

相关推荐

最新文章