轴对称(数学术语)

由网友(最黑的夜才能看见最亮的星)分享简介:对于称轴,数教名词,是支使几何图造成轴对于称或者扭转对于称的直线。对于称图形的1部门绕它扭转1定的角度后,便取另外一部门沉合。 很多图形都有对于称轴。例如椭圆、单曲线有两条对于称轴,抛物线有1条。邪圆锥或者邪圆柱的对于称轴是过底面圆心取极点或者另外一底面圆心的直线。中文名轴对于称阶段小教、始中科目数教外文名sy妹妹etric类型文科界说使几何图...

对称轴,数学名词,是指使几何图形成轴对称或旋转对称的直线。对称图形的一部分绕它旋转一定的角度后,就与另一部分重合。 许多图形都有对称轴。例如椭圆、双曲线有两条对称轴,抛物线有一条。正圆锥或正圆柱的对称轴是过底面圆心与顶点或另一底面圆心的直线。

中文名

轴对称

阶段

小学、初中

科目

数学

外文名

symmetric

类型

理科

定义

使几何图形成轴对称或旋转对称的直线

意义

轴对称图形

在人教版老教材第十一册中指出"如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形"。苏教版中指出:一个图形如果沿某条直线对折,对折后折痕两边的部分是完全重合的,那么就称这样的图形为轴对称图形。梳子的图片也是轴对称图形。注:斜放的图形只要能沿一条直线折叠,直线两侧的图形能够互相重合,就是 轴对称图形。在轴对称图形中间画一条线,那条线叫对称轴。

性质

像右图,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于 这条直线对称,这条直线叫做 对称轴,折叠后重合的点是 对应点(symmetric points),叫做对称点。 轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

轴对称图形具有以下的性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线;

判定

经过线段中点并且垂直于这条线段的直线,叫做这条线段的 垂直平分线(perpendicular bisector)。这样就得到了以下性质:

1.如果两个图形关于某条直线对称,那么 对称轴是任何一对对应点所连 线段的 垂直平分线。

2.类似地, 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.线段的垂直平分线上的点与这条线段的两个 端点的距离相等。

4.对称轴是到线段两端距离相等的点的集合。

作用

可以通过对称轴的一边从而画出另一边。

可以通过画对称轴得出的两个图形全等。

扩展到轴对称的应用以及函数图像的意义。

应用

关于平面直角坐标系的X,Y对称意义

如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。

相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

关于二次函数图像的对称轴公式

也叫做轴对称公式

设 二次函数的解析式是 y=ax^2+bx+c

则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点 纵坐标为 (4ac-b^2)/4a

在几何证题、解题时,如果是 轴对称图形,则经常要添设 对称轴以便充分利用轴对称图形的性质.譬如, 等腰三角形经常添设顶 角平分线;矩形和 等腰梯形问题经常添设对边中点连线和两底中点连线; 正方形, 菱形问题经常添设 对角线等等.

另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过 翻折反射到另一侧,以实现条件的相对集中.

应用试题

例1ABC中,P为∠ A外角平分线上一点,求证: PB+ PC> AB+ AC

分析:由于 角平分线是角的 对称轴,作 AC关于 AP的 轴对称图形 AD,连结 DPCP,则 DP= CPBD= AB+ AC.这样,把 AB+ ACACPBPC集中到△ BDP中,从而由 PB+ PD> BD,可得 PB+ PC> AB+ AC

证:(略).

点评:通过变为轴对称图形后,起到相对集中条件的作用,又有将 折线化直的作用(如 AB+ AC化直为 BD).

例2等腰梯形的对角线互相垂直,且它的中位线等于,求此梯形的高.

:如图3.设 等腰梯形 ADBCAB= DC, 对角线 ACBD相交于 O,且 ACBD, 中位线 EF= m.过 ADBC的中点 MN作直线,由等腰梯形 ABCD关于直线 MN成 轴对称图形,∴ O点在 MN上,且 OA= OD OB= OCAM= DMBN= CN.又 ACBD,故△ AOD和△ BOC均为 等腰直角三角形.2 OM= AD,2 ON= BC.∵ AD+ BC=2 EF=2 m,∴2 OM+2 ON=2 m

OM+ ON= ,所以梯形高 MN=m.

确定点的位置找最小值

例1  ABCDACCD,在 AC上找一点E,使得 BE+ DE最小。

解:作点 B关于 AC的对称点 B′,连接 DB′,交 AC于点 E,点 E就是要找的点。

例2 如图4,点 A是总邮局,想在公路 L1上建一分局 D,在公路 L2上建一分局 E,使 AD+ DE+ EA的和最小.

解:作点 A关于 L1和 L2的对称点 BC.连接 BC,交 L1于点 D,交 L2于点 E.点 DE就是要找的点。

例3要在河岸所在直线l上修一水泵站,分别向河岸同侧的 AB两村送水,请你设计水泵站应修在何处,所用管道最短?

分析:设水泵站修在 C点,此题的实质是求折线 AC+ BC的最短长度,可作出 A点关于直线l的对称点 A′,如图1,根据对称性, AC+ BC= AC+ BC,所以连结 BA′交直线l于点 C,点 C便是水泵站的位置,因为此时折线长 AC+ CB化成线段 AB的长,根据两点之间线段最短的道理便可确定点 C是水泵的位置。

与其它学科的结合

唐朝某地建造了一座十佛寺,竣工时,太守在庙门右边写了一副上联“万瓦千砖百匠造成十佛寺”,望有人对出下联,且表达恰如其分。

对联中有数字万、千、百、十,几个月过去了,无人能对,有个文人李生路过,感觉庙前没有下联不像话,十分感慨。一连几天在庙前苦思冥想,未能对出下联,有次在庙前散步,望见一条大船由远而来,船夫正使劲的摇橹,这时李生突发灵感,对出了下联———“一舟二橹四人摇过八仙桥”。

太守再次路过此庙时,看到下联,连连称赞“妙妙妙”.这副对联数字对数字,事物对事物,对称美如此的和谐。可见,对称美在文学方面也有生动深刻的体现。

生活中的轴对称无处不在,只要你善于观察,将会发现其间所蕴涵的丰富的文化价值和对称美给人带来的回味无穷的享受。

对称之后解方程

求有关最小值问题,经常利用对称的思想转移点的位置,改变思维角度,再利用(直线)一次函数的解析式求得最小值点的坐标,真正体现出“数形结合”的数学思想。

例1 已知两点 A(0,2), B(4,1),点 Px轴上的一点,且 PA+ PB的值最小,求点 P的坐标。

分析:如图1,在 坐标系中先标出点 AB的位置,在 x轴上要确定一点 P,使 PA+ PB最小,先作出点 A关于 x轴的 对称点 A′,连结 AB,与 x轴交于点 P,根据“两点之间,线段最短”的道理,点 P就是要求的点(如果另取一点 P′,则 PA+ PB> PA+ PB,这些都应该考虑到).

例2 某公路的同一侧有 ABC三个村庄,要在公路边建一货站 D,向 ABC三个村庄送农用物资,路线是 DABCDDCBAD.将 ABC三点画在 平面直角坐标系中, x轴为公路,货站要建在公路边上,且要保证送货路程最短,请画出点 D的位置,并求出点 D的坐标.

分析:假设点 D已确定,送货路程之和为 DA+ AB+ BC+ CD,因为点 ABC的位置已确定,所以 AB+ BC是固定的,只要 DA+ CD最小就可以保证送货路程最短.利用对称思想,可取点 A关于 x轴的对称点 A′,连接 AC,交 x轴于点 D,点 D即为所求.

解:略。

图形及对称轴

名称

对称轴的条数

对称轴

1

角平分线所在的直线

等腰三角形

1

底边上的高(顶角平分线或底边上的中线)所在的直线

等边三角形

3

各边上的高(角平分线或中线)所在的直线

等腰梯形

1

上下底的中线所在的直线

菱形

2

两条对角线所在的直线

无数

过圆心的每条直线

正方形

4

两条对角线所在的直线或对边中线所在的直线

半圆

1

经过圆心且垂直于这个半圆直径的直线

正六边形

6

过相对的顶点所在的直线或过对边中线所在的直线

[1]

阅读全文

相关推荐

最新文章