热力学(自然科学分支)

由网友(纵横乾坤)分享简介:冷力教(thermodynamics)齐称冷能源教,是天然科教的1个分支,是研究冷征象中物资体系正在均衡时的性子以及成立能质的均衡闭系,和状况发熟变迁时体系取外界彼此做用(包孕能质通报以及变换)的教科。工程冷力教是冷力教最早成长的1个分支,它首要研究冷能取机械能以及其余能质之间彼此变换的纪律及其使用,是机械工程的沉要根蒂根基教科...

热力学(thermodynamics)全称热动力学,是自然科学的一个分支,是研究热现象中物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的学科。工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。

中文名

热力学

全称

热动力学

定义

研究热现象中物质系统在平衡时的性质和建立能量的平衡关系、状态发生变化时系统与外界相互作用的学科

外文名

thermodynamics[1]

学科

自然科学

适用范围

发动机、相变、化学反应

基本定义

自然科学类书籍 自然科学图书 科学类书籍推荐 自然杂志 科普类读物

热力学(thermodynamics)是自然科学的一个分支,主要研究热量和功之间的转化关系。热力学是研究物质的平衡状态以及与准平衡态,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的物理、化学过程的学科。热力学适用于许多科学领域和工程领域,如发动机,相变,化学反应,甚至黑洞等等。

热力学,全称热动力学,是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与准平衡态的物理、化学过程。

热力学是热学理论的一个方面。热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。热力学三定律是热力学的基本理论。

主要定律

两个热力学系统均与第三个系统处于热平衡状态,此两个系统也必互相处于热平衡。

热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。它为建立温度概念提供了实验基础。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。而温度相等是热平衡之必要的条件。

第一定律

能量可以以功W或热量Q的形式传入或传出系统。

热力学第一定律反映了能量守恒和转换时应该遵从的关系,它引进了系统的态函数——内能。热力学第一定律也可以表述为:第一类永动机是不可能造成的。

热学的宏观理论,是从能量转化的观点研究物质的热性质,阐明能量从一种形式转换为另一种形式时应遵循的宏观规律。热力学是根据实验结果综合整理而成的系统理论,它不涉及物质的微观结构和微观粒子的相互作用,也不涉及特殊物质的具体性质,是一种唯象的宏观理论,具有高度的可靠性和普遍性。

热力学第一定律就是能量守恒定律,是后者在一切涉及热现象的宏观过程中的具体表现。描述系统热运动能量的状态函数是内能。通过作功、传热,系统与外界交换能量,内能改变。

第二定律

第二定律认为,所有的自然过程都增加熵。熵是宇宙无序状态的一种度量。第二定律的结果是:热从热地方流到较冷的地方。那样的话,集中在一个热物体上的热向四周扩散并变得不够有序,因此增加了熵。热不会自然的从冷地方流向热地方。

熵还在化学反应中起作用。许多化学反应在将化学能转化为热能,并散播到周围环境中导致熵的增加。有些反应释放出气体,它们不如液体和固体有序。

第三定律。

瓦尔特·能斯特表述为:当温度趋向于绝对零度时,系统的熵趋向于一个固定的数值,而与其他性质如压力无关。热力学第三定律认为,所有完美结晶物质于绝对零度时(即摄氏-273.15度),熵皆为零。

也可以表述为:绝对零度不可能达到,不可能用有限个步骤使物体冷却到绝对零度。

发展简史

古代人类早就学会了取火和用火,但是后来才注意探究热、冷现象本身,直到17世纪末还不能正确区分温度和热量这两个基本概念的本质。在当时流行的"热质说"统治下,人们误认为物体的温度高是由于储存的热质数量多。

18世纪

1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。

1798年,Countvon朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。

1799年,英国人H.戴维用两块冰相互摩擦致使表面融化,这显然无法由热质说得到解释。

19世纪

1842年,J.R.von迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。

英国物理学家J.P.焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。

1850年,焦耳的实验结果已使科学界彻底抛弃了热质说,公认能量守恒、而且能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳(J)就是以他的名字命名的。热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。

1824年,法国人S.卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律,但受"热质说"的影响,他的证明方法还有错误。

1848年,英国工程师开尔文(即W.汤姆森)根据卡诺定理制定了热力学温标。

1850年和1851年,德国的R.克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。

1850~1854年,克劳修斯根据卡诺定理提出并发展了熵。

热力学第一定律和第二定律的确认,对于两类"永动机"的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时,也形成了"工程热力学"这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。

与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到反映物质各种性质的相应热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律。

20世纪

1906年,德国的W.H.能斯脱在观察低温现象和化学反应中发现热定理。

1912年,这个定理被修改成热力学第三定律的表述形式。20世纪初以来,对超高压、超高温水蒸汽等物性和极低温度的研究不断获得新成果。

系统分类

(1)敞开系统(opensystem):与环境之间既有能量传递,也有物质传递

(2)封闭系统(closedsystem):与环境之间只有能量传递,没有物质传递

(3)孤立系统(isolatedsystem):与环境之间既没有能量传递,也没有物质传递

研究内容

热力学是从18世纪末期发展起来的理论,主要是研究功与热之间的能量转换。在此功定义为力与位移的内积;而热则定义为在热力系统边界中,由温度之差所造成的能量传递。两者都不是存在于热力系统内的性质,而是在热力过程中所产生的。

工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,不断提高热能利用率和热功转换效率。

为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程和溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。

研究方法

工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律(各种形式能量在相互转换时总能量守恒)、热力学第二定律(能量贬值)和热力学第三定律(绝对零度不可达到)作为推理的基础,通过物质的压力、温度、比容等宏观参数(见热力状态)和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。

这种方法,把与物质内部结构有关的具体性质当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。

相关局限

统计物理学与热力学结合起来研究热现象常常可以弥补以上局限性。

相关学科

物理学、量子力学、统计力学、化学热力学、化学动力学、热学、固体物理学。

主要原理

开尔文根据卡诺定理制定了热力学温标

热力学原理是一些制约能量从一种形式转换为另一种形式的定律。这些定律的很多推论给出物质性质与压力、温度、电场、磁场、成分的改变所产生的效应之间的关系。热力学是建立在人们共同经验观测基础之上的,由这些观测归纳成热力学定律。从几个这样的定律出发,可用纯逻辑推理的方法,演绎出这一学科的全部其余定律。有一种做法认为只有少数定律是独立的,从它们可以推导出其余定律。最近的趋势是选择不是最早发现的那些定律和假设作为基本的定律和假设。某些这种选择是十分有用的,因为由此可以很快地推导出其余定律。但是这里仍将讨论随着历史的发展而出现的那些定律,因为它们既不抽象,又可提供一个较明晰的物理解释。

可以说,当定义了三个态函数:绝对温度T、内能U和熵S后,热力学原理的整个发展就完满了。

第零定律确立了温度的概念,第一定律定义了内能,第二定律引进了墒的概念和绝对温标。最后,第三定律描述了嫡在绝对温度趋向零时的行为。为了便于说明,必须定义几个名词。系统是要考察的那部分物质世界。其余部分是周围介质。开放系统可以与周围介质交换物质、热量和功。封闭系统可以与周围介质交换热量和功,但不交换物质。孤立系统不与周围介质发生任何交换。一个封闭系统或者孤立系统有时是指一个物体。例如一个液体连同蒸气可以认为是两相系统。如果需要的话,可以把系统搞得相当仔细,但因关心的是热性质,所以只讨论没有受电场或磁场作用的单相各向同性的系统,唯一允许的作用力是均匀的法向压力产生的。

这样一个约束不是对热力学普遍性以根本限制,而只是便于教学。平衡态的特性与热力学有关的物质性质都是一些宏观性质,如温度、压力、体积、浓度、表面张力和粘滞度,不使用像原子间距离那样的分子性质。一个系统的状态是由全部宏观性质连同它们的空间变化来加以确定的。经验证明,一个孤立系统总会趋向一个特别简单的终态,此时系统的宏观性质是恒定的,而且在空间上是均匀的。这样的简单状态称为平衡态。如果人们关心一个单相系统的某一个给定的量,其平衡态完全可由r1个系统的宏观性质所确定,这里r是组元的数目。对一个不受磁场和电场作用的单组元、单相系统可以固定系统的两个宏观性质,例如压力和体积所有其余宏观性质,如粘滞度、表面张力等等,也都取固定值。

阅读全文

相关推荐

最新文章