特征值(数学术语)

由网友(@ 痞子)分享简介:特性值是线性代数中的1个沉要观点。正在数教、物理教、化教、计较机等范畴有着宽泛的使用。设 A 是n阶方阵,要是存留数m以及非0n维列向质x,使患上 Ax=mx 建立,则称 m 是A的1个特性值(characteristic value)或者原征值(eigenvalue)。非0n维列向质x称为矩阵A的属于(对于应于)特性值m的特性...

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

中文名

特征值

时间

1904

分类

数学

外文名

Eigen value

提出

希尔伯特

属于

线性代数

简介

GMAT常用数学术语汇总

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

定义

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。[1]

A的所有特征值的全体,叫做A的谱,记为.

广义特征值

如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν

其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。

若B可逆,则原关系式可以写作,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。

如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为A矩阵未必是对称的。

计算方法

求n阶矩阵A的特征值的基本方法:

根据定义可改写为关系式,为单位矩阵(其形式为主对角线元素为λ-,其余元素乘以-1)。要求向量具有非零解,即求齐次线性方程组有非零解的值。即要求行列式。 解次行列式获得的值即为矩阵A的特征值。将此值回代入原式求得相应的,即为输入这个行列式的特征向量。

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组:

的一个基础解系,则的属于特征值的全部特征向量是

(其中是不全为零的任意实数).

[注]:若的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.

基本应用

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

判断相似矩阵的必要条件

设有n阶矩阵A和B,若A和B相似(A∽B),则有:

1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;

2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|;

3、A的迹等于B的迹——trA=trB/,其中i=1,2,…n(即主对角线上元素的和);

4、A的行列式值等于B的行列式值——|A|=|B|;

5、A的秩等于B的秩——r(A)=r(B)。[1]

因而A与B的特征值是否相同是判断A与B是否相似的根本依据。

判断矩阵可对角化的充要条件

矩阵可对角化有两个充要条件:1、矩阵有n个不同的特征向量;2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。[1]

若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。(一个矩阵的对角阵不唯一,其特征值可以换序,但都存在由对应特征向量顺序组成的可逆矩阵P使=Λ)

更多应用

量子力学:

设A是向量空间的一个线性变换,如果空间中某一非零向量通过A变换后所得到的向量和X仅差一个常数因子,即AX=kX ,则称k为A的特征值,X称为A的属于特征值k的特征向量或特征矢量(eigenvector)。如在求解薛定谔波动方程时,在波函数满足单值、有限、连续性和归一化条件下,势场中运动粒子的总能量(正)所必须取的特定值,这些值就是正的本征值。

设M是n阶方阵, I是单位矩阵, 如果存在一个数λ使得 M-λI 是奇异矩阵(即不可逆矩阵, 亦即行列式为零), 那么λ称为M的特征值。

在A变换的作用下,向量ξ仅仅在尺度上变为原来的λ倍。称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量,当然,其他理论领域也有这一现象。

阅读全文

相关推荐

最新文章