痕量分析(2023最新痕量分析百科介绍)

由网友(乄人情㈩3畵)分享简介:痕质阐发 (trace analysis),样品中待测组分含质高于百万分之1的阐发要领 。痕质1词的寄义跟着痕质阐发技能的成长而有所变迁。痕质阐发包孕测定痕质元艳正在试样中的总淡度,以及用探针技能测定痕质元艳正在试样中或者试样外貌的漫衍状态。1般分红三 个基原步调:与样、样品预处置惩罚以及测定。因为被测元艳正在样品中含质很高、漫衍很没有...

痕量分析 (trace analysis),样品中待测组分含量低于百万分之一的分析方法 。

事业单位职业能力测验资料分析 创新考点容斥问题

痕量一词的含义随着痕量分析技术的发展而有所变化。痕量分析包括测定痕量元素在试样中的总浓度,和用探针技术测定痕量元素在试样中或试样表面的分布状况。一般分成3 个基本步骤:取样、样品预处理和测定。由于被测元素在样品中含量很低、分布很不均匀,特别是环境样品,往往随时间、空间变化波动很大,要充分注意取样的代表性和保证一定的样品量。为了增强对痕量成分的检出能力和除去基本干扰,痕量组分的分离与富集常常是必不可少的,有两种方案:一种是将主要组分从样品中分离出来,让痕量组分留在溶液中;另一种是将痕量组分分离出来而让主要组分留在溶液中。为了提高分离、富集效果,通常应用掩蔽技术。样品预处理的另一个目的是使痕量组分转变为最适宜于最后测量的形式。常用的分离 、富集方法有挥发 、沉淀和共沉淀、电解、液-液萃取、离子交换、色谱、萃取色谱、电泳等。在分离、富集过程中对于污染和痕量组分的损失要予以充分注意。

中文名

痕量分析

类型

测定痕量元素在试样中的总浓度

外文名

trace analysis

步骤

取样、样品预处理和测定

常用方法

痕量分析的常用方法分述如下:

化学光谱法

常用于测定高纯材料中痕量杂质,对分析99.999~99.9999%纯度材料,效果好,测定下限可达μg至ng级。此法须先用液-液萃取、挥发、离子交换等技术分离主体,富集杂质,再对溶液干渣用高压电火花或交流电弧光源进行光谱测定;或在分离主体后,把溶液浓缩到2~5ml,用高频电感耦合等离子体作光源进行光谱测定。

中子活化分析法

高纯半导体材料的主要分析方法之一。用同位素中子源和小型加速器产生的通量为1012厘米-2·秒-1以上的中子流辐射被测定样品。中子与样品中的元素发生核反应,生成放射性同位素及γ射线。例如Si+n→Si+γ。用探测器和多道脉冲高度分析器来分析同位素的放射性、半衰期及γ射线能谱,就能鉴定出样品中的痕量元素。中子活化分析法的主要优点是灵敏度高于其他痕量分析方法,可在ppm或ppb的范围内测定周期表中的大部分元素;使用高分辨率的Ge(Li)半导体探测器和电子计算机可显著提高分析速度;样品用量少并不被污染和破坏;同时能分析多种元素。对于中子吸收截面非常小,产生的同位素是非放射性的、或放射性同位素的半衰期很长或很短的元素,不能用此法分析。

质谱法

利用射频火花离子源双聚焦质谱计测定高纯度材料中痕量杂质,其优点是:灵敏度高,测定下限达μg至ng级,一次可分析70多个元素。如有标样,可进行高纯金属和半导体定量分析、粉末样品或氧化物(制成电极后需镀导电高纯银膜)的分析;如无标样,采用加入内标元素的方法也可进行定量分析。若粉末样品或溶液样品的分析与同位素稀释法技术结合,可不需标样进行定量分析,并可提高分析的灵敏度和准确度。

分光光度法

用被测定元素的离子同无机或有机试剂形成显色的络化物,元素的测定下限可达μg至ng级。在无机痕量分析中还常用化学荧光(发光)法测定某些元素,例如Ce、Tb、Ca、Al等。新合成有机荧光试剂,如吡啶-2,6-二羧酸,钙黄绿素等,都有良好的选择性和灵敏度,测定下限小于0.01μg。

原子吸收光谱法

有较好的灵敏度和精密度,广泛应用于测定高纯材料中的痕量元素。用火焰原子吸收光谱进行分析时,除用空气-C2H2火焰外,还可用N2O-C2H2火焰以扩大分析元素的数目。近年来,又发展出无火焰原子吸收光谱法,把石墨炉原子仪器应用于痕量元素分析。原子吸收光谱分析由于化学组分干扰产生系统误差,也由于光散射和分子吸收产生的背景信号干扰,短波区比长波区大;无火焰法比火焰法严重。为提高痕量元素测定的可靠性,采用连续光源氘灯和碘钨灯等以及塞曼效应技术校正背景,并与阶梯单色仪相结合以改进波长的调制,效果更好。此外,痕量分析中还应用原子荧光技术。

极谱法

采用电化学分析法进行痕量元素测定,除用悬汞电极溶出伏安法测定 Cu、Pb、Cd、Zn、S等元素外,近年来发展了玻璃碳电极镀金膜溶出伏安法测定某些重金属元素。另外用金(或金膜)电极测定As、Se、Te、Hg等元素。膜溶出伏安法可进行阳极溶出,也可进行阴极溶出,测定下限可达1~10ng,将溶出伏安法与微分脉冲极谱技术相结合,可大大提高灵敏度和选择性。

应用领域

痕量分析主要应用于地球化学、材料科学、生物医学、环境科学、表面科学以及罪证分析等领域。

铅的痕量分析

铅是一种对人体有害的蓄积性毒物。人们已经认识到,即使是低剂量的铅,由于能在人体中蓄积,也可不同程度地导致对人体特别是儿童的神经系统、造血系统、生长发育等方面出现症状不明显的慢性损害。因此, 痕量铅的危害愈来愈引起人们的关注, 其分析技术也不断得到发展,方法日益成熟。痕量铅的分析日益受到重视,传统的分析技术不断地得到改进和发展,新的分析技术亦不断出现。火焰原子吸收光谱法(FAAS)在痕量铅分析中继续保持最常使用的地位;阳极溶出伏安法虽然其使用仪器简便,但测定痕量铅的灵敏度和选择性却高,已得到广泛的重视和研究;样品的在线分离富集和联用技术大大提高了痕量铅分析的选择性和灵敏度,简化分析过程仍是研究的主要方向和热门课题。

砷的痕量分析

砷的测定包括砷的各种形态的测定, 早期多用光度法测定,最常见的是银盐法和新银盐法。前者以AgDDC -CH3 - 吡啶为吸收法;后者用NaBH4 将砷转换为砷氢化物,在硝酸-聚乙烯醇-乙醇体系中显色,根据不同砷氢化物所形成配合物吸收波长的差别测定含量。用一般光度法及联用技术测定, 如HPLC - ICP -MS。砷形态及痕量砷的分析方法很多,但这些方法多是价态分析,真正涉及形态分析的不多, 就分析对象而言,已涉及大气、土壤、矿石、血液等生化样品,环境水分析最多,从测定方法看,至今没有能同时识别各种形态的方法, ICP -M S法测定灵敏度高,但其价格昂贵,一般实验室不具备。分析工作者今后的任务是进一步研究能实现各种砷形态的高效分离技术和研究高灵敏、高选择性测定超痕量砷形态的分析方法。

钒的痕量分析

钒广泛分布于自然界中,在地壳中的总含量排在金属的第22位,约为0.02% — 0.03% 。钒主要存在于岩石矿物中,钢铁、淤泥、废水、食品甚至于人的头发中也含有微量钒。随着社会的不断发展,人们对钒的认识也越来越深入。首先,钒具有生物活性,是人体所必需的微量元素之一。但体内钒过量,则可刺激呼吸、消化及神经系统,也可损害皮肤、心脏和肾脏,还可抑制三磷酸腺苷酶及磷酸酶的活性,使皮肤出现炎症并引起变态性疾病。天然水中钒含量很低,大约浓度为1— 10μg /L,对人和动植物一般不会产生毒害作用。其次,钒可以用来制造各种各样的合金,在合金中加入极少量的钒便可显著改变其性能,被称为合金中的“维生素”。钒常作为合金钢的添加剂和化学工业中的催化剂使用,因此,钢铁、石油、化工、染料、纺织、陶瓷、照相、电子等工业废水中钒含量较多,往往造成污染。随着人们生活水平的不断提高,越来越重视微量钒对人类身心健康的影响。钒的生物活性和毒性决定于它的浓度和存在的化学形式,而它的营养价值和毒性仅相差一个很小的浓度范围。因此钒含量和化学形态的测定在钒化学中占有重要地位,所以准确测定水、食品、药品,生命有机体等样品中的痕量钒,具有非常重要的意义。

近年来,随着新分析试剂的合成、新分析体系的建立和新分析测试技术的发展而使钒测定方法各具特色。光度法、荧光法、化学发光法、极谱法、溶出伏安法、高效液相色谱法、原子光谱法以及质谱法等。尽管如此,大多数测定钒的方法仅停留在实验室研究,很少作为特定的方法应用于实际领域。从生命科学、环境科学和材料科学的发展来看,建立灵敏度高、选择性和重现性好的新方法来测定钒具有理论与实际意义。测定方法的发展趋势主要有以下几个方面:

(1)发展联用技术测定钒。但此方法仪器设备昂贵,分析成本高,在国内的报道很少。

(2)发展高效快速的在线分离技术测定钒。

(3)检测反应过程的自动化。流动注射分析与催化动力学,化学发光分析法相结合,不仅可以提高分析速度,而且还可以提高测定灵敏度,可能给测定钒带来新的活力。此方法在国内已有不少报道。

阅读全文

相关推荐

最新文章